
20
20

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

m
er

gi
ng

 T
re

nd
s

in
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
ng

in
ee

rin
g

(ic
-E

T
IT

E
)

97
8-

1-
72

81
-4

14
2-

8/
20

/S
31

.0
0

©
20

20
 IE

E
E

 1
0.

11
09

/ic
-E

TI
TE

47
90

3.
20

20
.2

03
2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

AUTOMATED DETECTION OF DRIVING
PATHWAY USING IMAGE PROCESSING

Poonam Priyadarshini
ECE

B.I.T. Patna
Patna, India

poonampriyadarshini@bitmesra.ac.in

Avish Jha
CSE

V.I.T. Vellore
Vellore, India

avish.jha@protonmail.com

Mayank Raj
ECE

B.I.T. Patna
Patna, India

mayankraj 8091 @gmail .com

Abstract— Image data is one o f the most popular real world input
data that can be used for variety o f applications ranging from
robotics and computer vision to security systems. In combination
with other methods such as neural network, Artificial neural
network and image processing techniques, manipulation o f image
data can lead to applications such as detection o f objects, tracking,
identification and vision based robotics and so on. Advanced
Driver Assistance System (ADAS) also use image for camera
based driver assistance systems.

The report covers a hardware model system that tests the
software work o f detection o f traffic signs and path for it own
ADAS systems. Different problems were tackled, including the
choice o f OS, and additional hardware components needed to
tackle. The choice o f programming languages, equipment, OS and
methods were based on simplicity and practicality. Artificial neural
network in combination with Open CV libraries were used for stop
sign, traffic light and path road detection. The hardware model
consisted o f RC Car attached to raspberry pi board with a mounted
pi camera for video streaming and an arduino controller attached to
a radio transmitter for controlling through Open CV running in
windows PC.
Keywords— Advanced Driver Assistance System, raspberry,
Classifiers, driving technology.

I. INTRODUCTION

The lack of proper enforcement of traffic rules in our
country is one of the biggest reasons for roads accident. In
2015 and 2018, reports showed that India had an average
mortality rate of 11.6 per 100,000 people just due to traffic
accidents alone. The data thus shows the lack of satisfactory
average safe driving environments in our country. To tackle
this problem, strict enforcement of traffic rules can be one
of the solutions, but this requires enforcing large traffic
police. Implementation of method that is efficient and can
be applied on majority of drivers of the country, tries to
improve their traffic habits and prevent accidents on its own.
The system that meets these requirements is the Advanced
Driver Assistance System (ADAS) [1].

Through ADAS systems, the car itself supports the
driver to perform tasks that are necessary and critical for his
safety. In hilly areas in India there is lack of protective
railings on the cliff side and car deviates from its path and
results in fatal accident. Since testing new ADAS systems
on real cars is impractical, developing a miniature hardware
model for testing purposes is one of the logical ways to go.
Miniature hardware models and simulation helps in the
testing of such systems [2-3]. Since new variables are
constantly met with on the roads and due to its nature of
unpredictability, it is essential that the ADAS uses learning
such machine learning technique instead of pre-defined
program. The input data for such miniature hardware model
can be anything but image data is reliable, inexpensive and
intuitive and together with neural networks can be used for

creating and implementing ADAS systems on such models.
Development of ADAS with features such as traffic light
detection, road sign detection and lane detection would
greatly diminish accidents as a large chunk of road accidents
occurs due to these failures.

II. Li t e r a t u r e s u r v e y

Aditya Jain in his work [1] proposed a working model of
self-driving car which is capable of driving to different
types of tracks such as curved tracks, straight tracks and
straight followed by curved tracks. A camera module is
mounted over the top of the car along with Raspberry Pi
sends the images from real world and used Convolution
Neural Network which predicts other directions. Arpad
Takacs et.al [3] give detailed description of self driving
technology, the level of autonomy of the car, the assistance
systems, basic theory behind making a workable
autonomous car, industries which are interested in these
technologies . David Singleton [7] demonstrates the use of
using even a cheap model RC Car in successfully modeling
a driver assistance system and testing it. Erik Coelingh et.at
[8] outline why simulation is not a good modeling practice
for a self driving car and discusses the advantages of
training in real world data, especially for the car.

Previous versions of this work were attempted on
macOS and Linux systems. The macOS system was
implemented by Zheng Wang, while the one using Linux
and android were implemented prior to that. We tried to
implement this system on windows hardware and attempted
to know the accuracy and efficiency of such setup on a
windows system. The use of optical isolators is an addition
to previously made Wang’s setup which is a necessary
improvement since the radio TX-2B doesn’t function
properly due to electrical interference between direction
pins. The use of optical isolators is inspired from relay
boards, since they too use optical isolators for the same
purpose.

III. So f t w a r e t e c h n iq u e s u s e f u l in Ad v a n c e d

Dr iv e r As s is t a n c e s y s t e m

ADAS systems require certain algorithms and software
techniques for its implementation. ADAS inputs can be of
various types ranging from LIDAR, X-Ray to image or
video streaming data. Here focus is on image data as image
input give more information and variation of any of the
parameters such as contrast, brightness, color mapping, etc.
which leads to numerous data samples that can be used for
further manipulation and processing. Neural Network is
used for Image processing and image classification. Neural
networks are one of the learning algorithms used within
machine learning. They consist of different layers for

978-1-7281-4142-8/S31.00 ©2020 THEE 1

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

analyzing and learning data. When the layers number in a
neural network is increased, learning is more and pattern
detection is more accurate. Neural Networks learn and
attribute weights to the connections between the different
neurons each time the network processes data. Artificial
neural networks use back propagation as a learning
algorithm to compute a gradient descent with respect to
weights. For training a machine learning model gradient
descent algorithms is used. It is used in case of supervised
training model. Newton’s Method is a second-order
optimization algorithm as it makes use of the Hessian
matrix. It is an extension of the gradient-based delta learning
rule. In this after finding an error (the difference between
desired and target), the error is propagated backward from
the output layer to the input layer via the hidden layer. It is
used in case of Multilayer Neural Network. Deep learning
algorithms are associated with Artificial Neural Networks. It
is a subset of machine learning, which uses neural networks
with many layers. In machine learning, the algorithm is
given a set of relevant features to analyze, however, in deep
learning, the algorithm is given raw data and derives the
features itself. One of the most basic learning algorithms
used in ANN is the delta rule used for the backpropagational
neural networks (BPNN). Here learning is a supervised
process where the machine or network tries to learn at every
epoch or cycle, where each cycle is marked by a different
input pattern. Based on how much different the guessed
answer is from the actual one, the network makes
adjustment to its weight.

Object detection in the form of traffic light
detection and stop sign detection is done through trained
neural classifiers. Every label of direction is attached with
the sample image and neural training is done based on that.
The neural network algorithm in the training code causes the
38400 pixels of the image to correspond to one of the three
direction labels. The predicted direction labels on the testing
samples are compared with the actual ones, letting the
algorithm to calculate the training and the validation
accuracy. Using neural network the car was manually run on
track through keyboard arrow presses. Each arrow press
caused a capture of a video frame as image. The image is
labeled with corresponding direction key pressed. After few
hundreds of images are taken, training is done through
Artificial Neural Network whose functions are present in
OpenCV library of python. After training, a trained “ .xml”
model is generated. Detection of path corners based on the
“ .xml” neural network model was generated. Car turns right
or left based on the corners detected. A trained neural
classifier of the traffic light was used for the detection. RC
car stops at red light and moves at green light. Trained
neural classifier of the stop sign was used for the detection
purposes. RC car stops at stop sign
Training data is gathered from image samples taken in

hundreds through a camera. A software model is created
after training whose accuracy can be tested through further
image samples taken which can be termed as the test
samples. Successful classification of images through neural
networks can applied for purposes where different classes of
images should trigger different output responses. The basic
methodology behind machine learning techniques include:
using pre-classified training examples and known attributes
to develop a search method, using a search method defined

on the training samples to generate a classifier inducing
algorithm After the classifier inducing algorithm or the
evaluation function is generated, it is applied on new
unclassified test samples to create classified image sets with
a respectable accuracy.

IV. Wo r k in g o f t h e m o d e l

The idea is that the model toy car is to act as a stand in for a
car in real life situations. We need the car to do three basic
things: a) Try to remain inside lane or road for cases where
the car accidently leaves the road due to human error b)
Follow traffic light rules which is stopping at red light and
moving at green c) Stopping at the presence of stop sign for
situations where stop signs are placed on road in case of
constructions or restricted areas.

The data collection for such is done from a single
versatile input source which is the camera. The camera used
here is the pi camera module which is interfaced to the
raspberry pi board [4]. The raspberry pi board will act as the
stand-in client computer that which will be attached to the
car for video streaming. The windows pc will act as the
stand in server. All the video streamed from the pi camera is
processed by the server computer due to the server
computer’s superior processing speed and power. Similar
server client model of ADAS can be found in Google’s self
driving car for reference. The car is steered by remote radio
signals from its radio transmitter which is interfaced to the
arduino uno microcontroller for intelligent automation [5-7].
Based on input video stream data, the car is intelligently
controlled through serial output from arduino, which by
itself is controlled through pygame library of python at the
software level. The pygame library is what interfaces the
software model to its hardware part. Object detection such
as traffic light detection or the stop sign detection is done
through trained neural network classifier. These are .xml
files that employ machine learning to enable systems to
differentiate between objects in images and identify them.
The lane detection is done by training the car on track with
different categories of path images labeled by different
direction keys on the pygame.

V. Ba s ic s o f t w a r e m o d e l a n d w o r k in g

The software model to be implemented on the
proposed hardware uses programming language Python 2.7
in the windows PC system for all the image processing and
computer vision work [8]. It also uses ANN to achieve its
objectives for intelligent detection of path. Object detection
in the form of traffic light detection and stop sign detection
is done through trained neural classifiers. TCP networking
and socket programming was used for connecting the
windows PC application process with the raspberry Pi video
streaming application, which ran in python 3. The hardware
was controlled physically through arduino microcontroller
which received inputs from the running from the running
software through through serial input.

VI. So f t w a r e im p l e m e n t a t i o n , t e s t in g a n d

TRAINING

A. Uploading Arduino Sketch program

The arduino program for keyboard control of RC
Car is uploaded into the arduino board using the Arduino

2

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

IDE. The program makes sure that the digital I/O pins are
kept at HIGH for every corresponding key press on the
keyboard and LOW after the key is released. For example
when the forward key is pressed on the keyboard, the
corresponding arduino pin which controls the forward pin of
the radio controller goes HIGH. This is done as the arduino
receives the serial input data from the computer (which is
the keyboard key press). Thus by keeping the digital I/O
pins HIGH/LOW, the corresponding direction pins of the
TX-2B IC is kept at LOW/HIGH through the optocoupler
channel circuit.

B. Keyboard control
The testing of keyboard control of car is done by

implementing pygame library functions in python. The key
presses are registered by the python program and the
resultant output is passed serially to the arduino board,
which is still attached to the server windows PC. Each key
press causes the corresponding pin in the arduino to go
HIGH and releasing the key causes it to go LOW.

C. Camera video streaming
Connecting Pi to PC using VNC viewer: The Raspberry Pi
microcomputer is switched on and connected to the
windows PC server through WiFi using mobile hotspot [9].
The first step is to determine the ip address of the Pi. For the
VNC viewer to connect to the ip address of the raspberry pi,
we need its ip address. The ip address of the raspberry pi is
found by using the command sudo ifconfig statement in the
terminal of the pi [10].

pi@ raspberryp i: - S ip e o n fig
bash: ip e o n fig : command not found
pi@ raspberryp i:~ S sudo i fe o n f ig
ethO: flags=4099<UP,BROADCAST,MULTICAST* mtu 1500

in e t 169.254.48.0 netmask 255.255.0 .0 broadcast 169.254.255.255
e the r b8 :27 :eb:a3 :5c:ee txqueuelen 1000 (E th e rne t)
RX packets 0 bytes 0 (Q.0 B)
RX e r ro rs Q dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (Q.0 B)
TX e r ro rs 0 dropped 0 overruns 0 c a r r ie r 0 c o l l is io n s 0

lo : flags=73<UPf LOOPBACK,RUNNINGS mtu 65536
in e t 127.G .0.1 netmask 255.0.G .0
in e t6 : :1 p re f ix le n 128 scopeid Oxl0<host>
loop txqueuelen 1000 (Lo ca l Loopback)
RX packets 17 bytes 1004 (1004.0 B)
RX e r ro rs Q dropped 0 overruns 0 frame 0
TX packets 17 bytes 1004 (1004.0 B)
TX e r ro rs 0 dropped 0 overruns 0 c a r r ie r 0 c o l l is io n s 0

/lanG: flags=4163<UP,BROADCAST,RUNNING,MULTICAST mtu 1500

Figure-6.1 Using the sudo ifconfig command

Figure 6.1 shows how the sudo ifconfig command is used to
the know the wlan0 ip address of the ip. After the ip address
was found we opened the VNC viewer application to write
the ip address of the raspberry pi for it to connect to the
computer.

m VNC Viewer _ u EB

Figure-6.2 Connecting Pi to PC through VNC viewer

When the connection is complete the raspbian OS
of the Pi loads into the VNC viewer as shown in Figure 6.3

Figure- 6.3 Accessing Raspberry Pi OS with windows PC
using VNC viewer
The raspberry pi OS [11-12], which is the raspbian, is
accessed using the VNC viewer. VNC or Virtual Network
Computing is graphical desktop sharing software used for
remotely controlling another computer from one’s
computer. To access the raspberry Pi through VNC viewer
of windows, the corresponding VNC server application
should be activated in raspbian OS of the raspberry Pi as
shown in Figure 6.4

Figure 6.4- Enabling VNC server on Raspbian OS Pi

D. Camera streaming

The streaming is done through the wifi connection. The
server camera streaming python program run on windows
PC while the client streaming program is run on raspberry Pi
usinf the VNC viewer. The camera streaming is done in
320x240 resolutions. Streaming is done in both grayscale
and color format. The grayscale format is for training
whereas the color format is used for user use and viewing.

Table-1 IP addresses of the server and the client

Serial

Number

Server WLAN IP

address

Client WLAN IP

address

1 192.168.43.183 192.168.43.64

The table 1 outlines the WLAN ip addresses found for the
server and client systems that are needed to connect the
systems through wifi connection. The ip address of the
server which is the PC is known by writing the ipconfig
command at DOS terminal.

3

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

VII. Tr a in in g o f t h e m o d e l f o r i n t e l l i g e n t

MANEUVERING

The software model [13-14] for intelligent maneuvering is
trained through manual runs of car along the path by
collecting images streamed when doing those test runs. Key
presses are needed for the car to move. During the same
time, image data samples is collected using an algorithm
such that when the user presses the keys to move the car, the
camera takes images of the path. For each direction key
press, a sample image is taken. The images fames are stored
and labelled with their corresponding direction key labels.
Successful training is determined when the car is able to
turn automatically when it is at the edge of the path. The
software model training work of the collected labelled
images is done internally after the data collection is
complete. For this we use an ANN algorithm and related
functions of Python.

Figure-6.5 Training of the model for forward direction

Figure-6.6 Training of the model for corners.

Figure 6.5 and Figure-6.6 shows the different situations the
car experiences. At extreme corners, the car needs to turn in
either left or right direction for it to remain within the road
or path.

The basic philosophy when training the model is
letting the model differentiates between situations where the
car is at the extreme edge or corner of the path or turn and
where the car is at the middle of the said path. When the
model is at the extreme corner of the black path, the camera
captures only the white surrounding area and not the path it
runs on, and thus the path occupies only 20% or less of the
image in such situations. For straight paths, the path
occupies more than 20% of the image. The key presses
accordingly make the model understand when to turn
forward and when to turn in a different direction. Similar
differentiation between left and right directions can be done

with further training. Every label of direction is attached
with the sample image and neural training is done based on
that. The neural network algorithm in the training code
causes the 38400 pixels of the image to correspond to one of
the three direction labels. The predicted direction labels on
the testing samples are compared with the actual ones,
letting the algorithm to calculate the training and the
validation accuracy .

VIII. Tr a f f ic L ig h t a n d St o p Sig n De t e c t io n

After the trained intelligent maneuvering is done, neural
network classifiers [15-17] of stop sign and traffic light is
used for the detection of stop sign, red light and green light
using pi camera. The car stops or moves based on the signs
it detects. For the detection of the traffic light, a traffic light
module was used as given figure

Figure-6.7 Traffic light module

Figure-6.8 Stop Sign

The stop sign was made from a taking a photocopy of a
standard stop sign image taken from google images and
pasting it on cardboard.

The neural network classifiers for these two signs
are haar cascade classifiers. These haar cascade classifiers
are trained by taking 50 or more positive sample images if
the sign that needs to be trained and about ten times the
number of negative samples which can be anything other
than the sign itself. The trained haar cascade classifier is
then used for the detection of the traffic lights and the stop
sign according to which the car stops and moves
accordingly.
Haar cascade classifier was also used for differentiating
between the green and red light. Since the traffic lights have
a fixed position starting from red at the top to green at the
bottom, the haar cascade classifier was made according to
their position on the traffic light module rather than their
color. This was important as only a grayscale input image
was enough causing less load on the training machine and
quick processing. When detecting the traffic light, the
camera first detects the shape of the traffic light module and
its color black, which is totally consistent with grayscale

4

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

input image. After the detecting the traffic light, the
individual lights are then detected leading to detection of the
red light and the green light.

IX. RESULTS

A. Training and Validation accuracy of the data collected
for intelligent maneuvering

T able 2 Model training of the collected input data in three
different times

Sl No of Training Validation Training
No. image

samples
Accuracy Accuracy Duration

1 169 88.98% 90.20% 91.54s
2 205 91.61% 93.55% 124.22s
3 196 33.58% 42.57% 104.80s

The sample images are inputted in array form of
dimensions (no. of image samples, 38400), where 38400
stands for number of pixels on the image. The neural
classifier array is outputted in the form (no. of image
samples, 4) where 4 correspond to the different four
directions. The total number of sample images was divided
into training set and testing set for determining the training
and validation accuracy. The number of sample images is
the number of images captured by the pi camera registered
with a label whenever a key press event took place on the
keyboard during the training of the car. A key press to move
the car also led to capturing of the image with a label the
same as the key that was pressed. For example, if forward
key was pressed, an image would be taken of the track and
that image would be labeled with the label ‘forward’. The
same way image would be taken with right and left key. The
total samples were then divided into two parts, the first part
is the training samples, which are the samples from which is
the training model is created. When this trained model is
applied on the training samples, the training accuracy is
determined. The other parts are called the testing sample
which is used to test the model created during training.
When the trained model is applied on the testing samples,
validation accuracy is calculated. For good results, the
validation accuracy should always be more than the training
accuracy. The training duration is nothing more than the
time the model took to train itself.

X. De t e c t io n o f t r a f f ic s ig n s

A. Stop sign detection
The trained neural classifier of stop sign was used

for its detection. In addition, distance of the stop sign from
the car was measured after it is detected: The model car
stops after the stop sign is detected remains stopped till it
keeps on detecting the stop sign. As soon as the stop sign
was removed, the car started to move which is what is
required.

Figure-6.9 Stop sign kept in front of the model car

Figure-6.10 Detected stop sign with distance measurement

B. Traffic Light Detection
Trained neural classifier was used for the traffic

light detection. Differentiation between red light and green
light was done based on this neural classifier. For detection
purposes a traffic light module was used. Figure 6.11 shows
the traffic light module used for the detection.

Figure-6.11 Traffic light module

A traffic light module was used for the detection purposes.
The module was powered using 5 V power supply and kept
in upright position using cardboard backbone.

5

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

Figure-6.12 Red Light Detection

The detected red light output image is given in Figure 6.12.
The car stops as soon as it detects the red traffic light.

Figure-6.13 Green Light Detection

The green light detected output image is shown in Figure
6.13. When the green light is detected car keeps on moving.
The minimum distance for detection is kept at 30 cm due to
keeping in mind the delay produced when streaming through
mobile hotspot wifi, which has greater latency and not as
reliable as a standard router one.

XI. Dis c u s s io n s

The latency during the video streaming of the pi
camera greatly affects the accuracy of the results. since the
project uses mobile hotspot as the medium of WiFi, a not so
satisfactorily latency definitely has some impact on the
accuracy and proper working of the model. For our case, the
latency was not too great for it to be unfeasible and using
mobile hotspot worked just fine, but using standard WiFi
medium of connection such as from powerful routers will be
much preferable. It could be possible that the poor training
accuracy in the third row of table might be because of this
factor but it may not be the only.

The speed of the model RC car is not variable for
models that require variable car speed for certain ADAS
applications. Using expensive variable speed RC Car or
making your own variable speed donkey car can be an
option, but they both are expensive and so for the work
needed to be done in this project, a simple RC Car was
enough.

XII. Co n c l u s io n

The model designed for the detection of the signs and
pathway had a lot of ups and downs. We used a basic four
direction RC car that didn’t have speed control because of
which the accuracy of training and the accuracy of the
results were affected. Excessive speeds caused the model to
go too fast before it could detect corners, turns, or signs.
Using a resistor solved the problem to some extent but using
an expensive speed control RC controller would be a much
better option. Donkey car projects are highly efficient too
but they are also too expensive to be applicable. Even with
these problems the model worked satisfactorily in detecting
traffic signs and path. Latency of the video streaming could
be improved using a router instead of mobile hotspot.
Processing speed of the server PC could be improved by
using a high end computer.

REFERENCES

[1] Aditya Kumar Jain, “Working model of Self-driving car using

Convolutional Neural Network, Raspberry Pi and Arduino” , 2nd

International conference on Electronics, Communication and

Aerospace Technology (ICECA 2018).

[2] Ahmad Adamu Galadima, “Arduino as a learning tool” , 2014 IEEE

[3] Arpad Takacs, Imre Rudas, Dominik Bosl, and Tamas Haidegger,

“Highly Automated Vehicles and Self-Driving Cars” , IEEE Robotics

and Automation Magazine December 2018.

[4] Bhaumik Vaidya, Ankit Patel, Anand Panchal, Rangat Mehta, Krish

Mehta and Parth Vaghasiya, “ Smart home automation with a unique

door monitoring system for old age people using Python, OpenCV,

Android and Raspberry pi” , International Conference on Intelligent

Computing and ControlSystems ICICCS 2017

[5] Brian Markwalter, “The Path to Driverless Cars” , IEEE Consumer

Electronics Magazine April 2017

[6] Chris Urmson and William “Red” Whittaker, Carnegie Mellon

University, “Self-Driving Cars and the Urban Challenge” , IEEE

intelligent systems published by IEEE computer society2008.

[7] David Singleton, “How I built a neural network controlled self­

driving (RC) car!” , https://blog.davidsingleton.org/

[8] Erik Coelingh and Jonas Nilsson, “Driving tests for self- driving

cars” , March 2018 spectrum.ieee.org

[9] Fatma Salih and Mysoon S.A. Omer, “Raspberry pi as a Video

Server” , International Conference on Computer, Control, Electrical,

and Electronics Engineering 2018.

[10] Manikandasriram Srinivasan Ramanagopal, Cyrus Anderson, Ram

Vasudevan and Matthew Johnson Roberson, “Failing to Learn:

Autonomously Identifying Perception Failures for Self-driving Cars” ,

IEEE Robotics and Automation Letters. Preprint Version, Accepted

July, 2018

[11] Mehmetcan Guleci and Murat Orhun, “Android Based WiFi

Controlled Robot using Raspberry Pi” , 2nd International Conference

on Computer Science and Engineering, 2017.

[12] Mike Daily, Swamp Medasani, Reinhold Behringer and Mohan

Trivedi, “ Self-Driving Cars” , IEEE magazine 2017.

6

2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE)

[13] Ruturaj Kulkarni, Shruti Davalikar and Sonal Bangar, “Traffic Light

Detection and Recognition for Self Driving Cars using Deep

Learning” , Fourth International Conference on Computing

Communication Control and Automation, IEEE 2018.

[14] Souhail Guennouni, Anass Mansouri, Ali Ahaitouf Sidi Mohammed

and Ben Abdellah, “Multiple Object Detection using OpenCV on an

Embedded Platform” , IEEE 2014 .

[15] Yihuan Zhang, Jun Wang, Xiaonian Wang, and John M. Dolan,

“Road-Segmentation-Based Curb Detection Method for Self-Driving

via a 3D-LiDAR Sensor” , IEEE transactions on intelligent

transportation systems.

[16] Zhang Lei, Zhang Xue-fei and LIU Yin-ping, “Research of the Real­

time Detection of Traffic Flow Based on OpenCV” , International

Conference on Computer Science and Software Engineering, IEEE

2008.

[17] Vu Truong Thanh and Yoshiyori Vrano, “Mobile TCP socket for

secure applications” , The 12th International Conference on Advanced

Communication Technology (ICACT) 2010.

7

